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Abstract. It can be shown that general relativity admits structures that are strictly conserved 
in number for topological reasons. Such objects, called ‘kinks’, are associated with the 
particular form of the metric and it has been shown that a kink has many of the properties 
expected of a classical analogue of a Fermi particle. This paper examines the general form 
of a stationary spherically symmetric metric corresponding to a single kink centred at the 
origin. This is a generalization of the usual spherically symmetric Schwarzschild case. 
The Einstein tensor is deduced for this system, and it is shown that there is no free-field 
solution for this case. It is indicated how possible extensions, such as the inclusion of electric 
charge, may lead to the possibility of solutions. 

1. Introduction 

The ‘theory of kinks’ (Finkelstein and Misner 1959, Skyrme 1958,1961a, b) is a theory of 
a particular type of particle-like solution that can occur in certain nonlinear (classical) 
field theories. The theory has been largely developed with a view to interpreting a 
‘kink’ as an elementary particle?. To every kink there will be an anti-kink, and, by virtue 
of the topological configuration of the field variables and the boundary conditions at 
infinity, the algebraic number of kinks will be conserved. This can be seen to be true 
even after quantization (Williams 1972). Furthermore, the possibility of interchanging 
the positions of two kinks leads to the usual field-theoretic idea of odd or even statistics. 
For field theories in three-dimensional space, it is possible to define the concept of ‘spin’, 
both even- and odd-half-integer, euen at the classical level. This has been done by 
Finkelstein and Misner (Finkelstein and Misner 1959, Finkelstein 1966) using topological 
ideas of connectedness. Once more, a spin-statistics theorem, of the type usual in linear 
relativistic quantum field theories, has been proved for kink theories by Finkelstein 
and Rubinstein (1968). Thus a classical field theory containing kinks of odd-half-integer 
spin (in the sense of the definition of Finkelstein and Misner) provides the classical 
analogue of a quantum field theory of fermions. Much of the importance of kink theory 
lies in this ability to describe Fermi particles, since the latter play a central role in 
elementary particle physics. 

In this paper we shall choose general relativity as the classical field theory and shall 
study the properties of the metric g,, when there is a kink present. First, however, by 
way of illustration, we shall examine some simpler field theories. A one-dimensional 

For other physical interpretations, see especially Enz (1964), Barone et al(1971), and Caudrey er al(1973). 
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example is provided by considering the set of all mappings 6 from the real line R' into 
the circle S', 

8:R' + S ' .  

Heuristically, the number of kinks present is equal to the number of times that the real 
line wraps itself around the circle (ie the Brouwer degree of the mapping). Thus a single 
kink is pictured as a twist through 2 ~ .  Since a mapping is by definition continuous, it 
follows that the twist must occur over a finite region of space so that by its very nature a 
kink is an extended object rather than a point particle. It is important to specify boundary 
conditions at infinity. Let us denote any member of R' by x, and parametrize S' by two 
real variables (+', 42)  whose squares add up to unity. Then the boundary conditions 
are chosen to be 

e(x) + (0~1)  a s x +  ? C O .  

This is like saying that there is no 'matter' at infinity. Such boundary conditions imply 
that the number of kinks in the system is conserved for all time, independent of any 
particular Lagrangian that may be chosen for the system. This model has been extensively 
studied (Barone et al 1971, Caudrey et a1 1973, Enz 1963, 1964, Perring and Skyrme 
1962, Rubinstein 1970, Scott 1969,1970, Streater and Wilde 1970). In particular, Skyrme 
(1961a) has quantized the model and has explicitly constructed the quantum-mechanical 
operator that creates a kink. Such operators are seen to satisfy anti-commutation 
relations. 

This simple model suggests a generalization to three dimensions. Thus consider 
mappings cp from three-dimensional space R 3  into the three-sphere S 3 ,  

cp: R 3  + S 3 .  

Parametrizing S 3  by four real variables ($', 4 2 ,  43, 44) such that 

we ensure the conservation of kinks by imposing the boundary conditions 

cp(x) + (0,0,0,1) as 1x1 -, CO 

where x is any member of R3. Using topological arguments it can be shown (Williams 
1970) that wavefunctionals in this model will exhibit a double-valuedness characteristic 
of spin i. Both classical and quantum-mechanical versions of this model have been 
studied by Skyrme (1961b, 1962, 1971) who, by introducing a suitable dynamics for the 
boson fields {4,}, shows that the kink field will satisfy the Dirac equation, in the lowest 
approximation. The model also bears simularities with chiral dynamics, and has been 
discussed from this viewpoint by Dowker (1972a, b). 

We now turn to what is the principal purpose of this paper, the examination of 
general relativity from the point of view of kink theory. Here, one is concerned with a 
metric tensor g,, which belongs to the set S4,1 of all 4 x 4 real symmetric matrices of 
signature (+ + + -). For the majority of this paper we shall regard space-time as 
simply connected, and so the usual geons of geometrodynamics such as Einstein-Rosen 
bridges and wormholes will not be considered. Thus we can use a space coordinate 
x E R3, and at any particular instant of time, g,, can be regarded as a mapping from R3 
into S4,' : 

guv: R3 -b s4,1. 
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We impose the boundary condition that 

as 1x1 + CO s,v + B,v 

where qMv is the Minkowski metric, diag(1, 1,1, - 1). The occurrence of kinks in 
general relativity was first discussed by Finkelstein and Misner (1959). They showed 
that kinks arise naturally within the theory and that they are of a single type, so that 
the kink number is a single integer. Since gMv is a mapping between spaces of different 
dimensions, the concept of Brouwer degree cannot be used to count the number of 
kinks. However, the different possibilities can be analysed by considering the third 
homotopy group of S4.1, namely 713(s4,1). It turns out (Steenrod 1951) that 713(s4,1) is 
isomorphic with the group of integers, 

713(S4,,) = 2, 

The group element of Z,(S,,~) corresponding to the zero element of Z will contain all 
of the metrics g,, corresponding to zero kink number. The one-kink metrics will be 
contained in the element which generates nS(S4.1) (and the one-anti-kink metrics will be 
contained in the inverse of this element). To investigate the possibility that the kinks 
of general relativity have odd-half-integer spin one must examine 271 rotation paths in 
that part of mapping space which contains the one-kink mappings. This, it has been 
shown by Finkelstein and Misner (1959), is equivalent to investigating the structure of 
714@4,1). The fact that 

n4(S4,1) = z2 

where Z, is the group of integers modulo 2, means that there will be non-trivial, doubly- 
connected paths, and it has been shown (Williams 1971) that such paths arise from 
rotation through 271. Thus the kinks of general relativity are objects with odd-half- 
integer spin. If one adopts the philosophy that elementary particle physics can be 
described in terms of the curvature of space, then solutions of Einstein’s equations 
corresponding to a one-kink metric would provide classical analogues for the fermions. 

In what follows, we construct a general form of the metric for a single kink, centred 
at the origin, with the simplifying restrictions that the system is spherically symmetric 
and stationary in time. This is a generalization of a simple model for a one-kink metric 
previously considered by Williams and Zia (1973). We then calculate the Einstein 
tensor Gi. As it has been pointed out by Finkelstein and Misner (1959, p 239), if there 
are kinks present it is not clear whether or not the free-space Einstein equations possess 
any solutions. To study this question we investigate whether or not our one-kink 
metric can lead to such a solution. Finally, we discuss the possibility that the kink may 
be electrically charged. 

2. Construction of the metric 

S4.1 is a fibre bundle with the three-dimensional rotation group SO, as base. Because of 
the boundary conditions, the infinite boundary of R3 can be identified to  a single point 
resulting in a manifold topologically equivalent to S3 .  It can be shown (Steenrod 1951) 
that an example of a one-kink mapping is one which maps the whole of R3 ( N S 3  N SU,) 
onto the SO, base using the usual two-one homomorphism between the groups S 3  
and SO,. Any mapping homotopic to (ie deformable into) this mapping will also be 



1874 J G Williams 

a one-kink mapping. It is not difficult to see that an example of such a mapping is 
provided by the metric 

llgrvll = p i ( e e e o  )Il 
-e', 

where P is an orthogonal matrix given by 

/ -44 -43 4 2  - A \  

i 43 - 4 4  -41 - 4 2  

- 4 2  4, - 4 4  -43 
P =  [ 

\ 41 4 2  4 3  - 4 4 /  

The ($J~,  4 2 ,  43, $4) E S3, and are functions of x representing a one-kink mapping from 
R3 onto S 3  (and so cannot be deformed away). In actual fact, SO3 is involved rather 
than S3, since giving a value to  gpv only determines the {4p}  to within a k sign. Thus 
the metric gpv is topologically equivalent to a mapping from R3 onto the base of S4,1 
and hence is a one-kink mapping. The functions 0, A are assumed to be real valued 
functions of r = 1x1. We choose the particular form of the to be 

X' 4i = -sin U 
r 

i = 1 ,2 ,3  

44 = cos U 

where U is any real function of r such that 

u(0) = 71; u(o0) = 0. 

This ensures the presence of a kink. To obtai 
boundary conditions 

~ ( r ) ,  A(r) + 0 a s r + c o .  

(1) 

asymptotic flatness we als insist on the 

(2) 

We note that the above metric is a combination of the simple model given by Williams 
and Zia (1973) with the usual spherically symmetric case that leads to the Schwarzschild 
solution. It will be convenient to exploit spherical symmetry to the utmost and so we 
write the metric in spherical polar coordinates. We allow Greek labels to run over 
r ,  8, cp, t .  Hence we define the one-kink metric grv to be given by : 

g,, = eo - (eu + e') sin2a 

gee = r2 
g,, = r2 sin28 

g,, = eo sin2a - e' cos2u 

g,, = g,, = - (ee + e') sinu cosu 

all other components being zero. Here we have used the usual trick of changing the 
scale to remove the factor of ee in front of the 88 and cpq components. If there were no 
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kinks present (ie a s 0) the gpv reduce to the usual spherically symmetric form as given 
by Tolman (1934), for example. The special case of U = ,4 = 0 leads back to the simple 
model mentioned previously (Williams and Zia 1973). An essential feature of our form 
for gpV, and indeed of all metrics that contain a kink, is that g,, is not identically zero. It is 
important that g,, take both positive and negative values. Thus g,, will be zero at least 
once. It is this which prevents our using the usual coordinate transformation to trans- 
form away the g,, term. To illustrate this point, we follow the procedure of Bergmann 
(1942). Writing the general spherically symmetric line element in the form 

ds2 = A(r)  dt2 + 2B(r) dr dt + C(r)  dr2 + D(r) de2 + E(r)  dq2  

a coordinate transformation is introduced by 

f = t - t  f(r)  

i; = r,  B = 0, @ = q. 

The components gr, transform according to 

or 

df B = B - A - .  
dr 

One then tries to eliminate the B term by choosing f so that it satisfies the equation 

df B _ -  - -  
dr A '  

However, in our case 

A = g,, = eo sin2a-eA cos2a 

and since there is a kink present, A will take the value zero at least somewhere, thereby 
invalidating the above procedure. We note in passing, that although deformations of the 
above type cannot remove the kink, given any stationary spherically symmetric one- 
kink metric we can use similar kinds of deformations to put the metric into the form 
given, that is with the additional variable occurring in combinations sin a and cos a. 
This will lead to considerable simplification. 

Using our form for the metric, g,, , we now proceed to calculate the G1;. Even though 
there is doubt as to the role that such kink metrics may play in physics, we can still take 
the view that the above metric is worthy of investigation in its own right, its being a 
non-trivial generalization of the usual spherically symmetric case. 

3. Calculation of the Einstein tensor 

The inclusion of the additional variable a(r) in the gcv greatly complicates the algebra 
involved. The latter may be performed more conveniently, however, by introducing 
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the following variables : 

P = sin3a cos a 

Q = sinacos3a 

A +  = l+e"-' 

A- = l+e-"+' 

S+ = 1-PA+/(P+Q) 

T+ l -QA+/(P+Q) .  

Using a prime to denote the derivative with respect to r ,  we write 

5 = 0'/2,  v]  = At/2. 

Much use will also be made of the relations 

P+Q = sinacosa 

PQ = (P+Q)4 

P -- P+Q - sin'a 

-- P+Q - costa. Q 

It is now a simple matter to canalate the Christoffel symbols according to 

These are given in the appendix. We note that 

g 5 det g p v  = - r4 sin2$ e"" 
LI (3) 
L rf, = ; + 5 + 9 .  

The presence of the kink has no effect on either of these two expressions. The Ricci 
tensor 

can be found in a straightforward manner and is listed for reference in the appendix, 
along with the curvature scalar R. The Einstein tensor is given by 

GL = Rv-LJvR 
P 2 ,  

and the non-trivial components are found to be : 

a'[-2(P+Q)A+]+{ ----(A+-1) + v ]  +- 
r ( p"e ) ( p:"e) +(?)I 
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G: = Gb = e - a [ ( a " + $ ' ) [ - ( P + Q ) A + ] + < '  --(A+-1) P +'' +- ( P + Q  I ( P f Q )  

P - Q  P 
A +  +- - - +- 

+- ) :[ ( P + Q )  P+QA' ]  
P2  - Q2 P 
( P  + Q)' + 

( P + Q  

+(a02( ------A ) + ( < I 2 (  - P A +  - 1) 

+(a'() [4(P + Q ) -  3(P + Q)A+1+ (a'tl) [ -4(P + Q)+ ( P  + Q)A+I 

+((') -1+--A+ 

S+ -ee ( -- ;:Q) +'($A+ - l)) -I- ( y)] 

G: = 0 

-2A+e-" 
r G: = ( P  + Q ) ( (  + tl). 

Because there is a kink present, equation (1) implies 

P + Q  f 0. 

For this reason, G: is non-trivial. 

4. Attempt to find a free-field solution 

Let us consider the Einstein equations, 

where G is the gravitational constant and T i  is the energy-momentum tensor for the 
system. In this paper we shall follow the approach of Misner and Wheeler (1957) in 
regarding classical physics as describable in terms of curved empty space, and nothing 
more. Thus T;  will be identically zero unless there is an electromagnetic field present. 
In the latter case, TL will be simply the electromagnetic energy-momentum tensor. 
(The electromagnetic field is also described in terms of the curvature of space, being 
given by the 'Maxwell square root' of the Ricci tensor ; we refer to Misner and Wheeler 
(1957).) 

We mention in passing, a different approach that is adopted in the paper by Ross 
(1972) in which an elementary particle is studied from a gravitational point of view by 
using the Reissner-Nordstrram metric (no kinks). Ross regards the strong interaction 
of elementary particle physics not as a particular species of gravitational force but 
rather as a separate force in its own right, and so he includes it explicitly in the energy- 
momentum tensor on the right-hand side of equation (5 ) .  The procedure is of necessity 
phenomenological, nevertheless, by choosing a Yukawa potential for Ti,  he obtains 
some interesting results. 
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Returning to  the problem in hand, we now consider the situation in which we have 
an uncharged kink. Thus we neglect electromagnetic forces and look for solutions of 
the free field equations, G; = 0. Bearing equation (4) in mind, G: = 0 implies 

5 + q  = 0. 

Using the boundary conditions of equation (2), this gives 

/. = -cr. 

We now make this replacement in all of the G;. We use G;, s+, A+ to denote G;, S +  , 
A + with i. put equal to - cr : 

- 2 V - Q )  2P - ] (".;e")] ( P + Q  P + Q  
a f [ - 2 ( P + Q ) A + ] + 5  ----A+ + __ 

A+) c: = G; = e - ' [ (o l f '+ jar ) [ - (P+Q)x+]+5 '  P - Q  P 
P + Q  P + Q  

Thus there will be two equations for the two unknowns, U and a. Applying the first 
equation, e; = 0, we may eliminate a' and < / r  terms from in equation (7). We may 
also eliminate the a'' and 5' terms from c: by applying drq = 0. Putting @ = 0 then 
gives 

which, after some cancellation, leads to 

This can be rewritten as 

and is one of the terms in the expression for e, equation (6). The equation 
then becomes 

= 0 

e-" 
--r'(P+Q)(1+e2") = 0. 

r 
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Clearly, since a kink is present, this equation has no solution (see equation (4)). Thus 
we conclude that there are no stationary spherically symmetric kink solutions to  the 
free field equations. 

5. Electrically charged kink 

We denote the covariant electromagnetic field tensor by F p v .  For the present spherically 
symmetric time independent problem, there will be an electrostatic field characterized 
by a scalar potential 4, and the only non-zero components of Fpy will be given by 

F,, = -F,, = a,+. 
The contravariant components are 

Fw * 
F" = -e-"-.4 

The electromagnetic field equation is 

a y ' +  m-fp = 0. 

As seen from equation (3), even with the kink present, r$ takes on the same value as in 
the normal Schwarzschild case. Thus the electromagnetic equation will have the usual 
form of first integral : 

r 2  e-+(u+A) a,$ = - e  

where e is a constant of integration representing the electric charge. Writing T;  as the 
energy-momentum tensor of the electromagnetic field, we have 

Einstein's equations then become 

G; = 0 for all other p, 11. 

Since the equation G:-= 0 still holds, it follows that 2 = - a and so the above equations 
reduce to 

Ge2 
r4 

G r  = .- 

G; = 0 

with the G: and @ given by equations (6) and (7). Following a procedure similar to 
that taken for the uncharged case, we arrive at 

Ge2 
r 

(ala')[ - 2(P + Q)( 1 +e2')] = + 1 + ea). 
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Clearly, with charge present, the possibilities of finding solutions are much wider. The 
above approach, however, is more suitable for a system with a point charge. This is 
not very appropriate for a kink since the latter has spatial extension. For this reason, we 
end the analysis at this point. 

6. Conclusions 

In this paper we have constructed the metric appropriate to a single stationary spherically 
symmetric kink placed at the origin. It was shown that there are no free-field solutions 
of this type. To the extent that such gravitational kinks represent a serious model of an 
elementary particle, such a free-field solution should correspond to a neutral particle 
whose behaviour is time independent (and so must be stable). However, there is no 
suitable candidate in the table of known elementary particles. (The only neutral stable 
particle is the neutrino, but this is ineligible because its velocity is that of light so that it 
cannot be regarded as fixed at the origin.) Thus the lack of a free-field solution is quite 
a satisfactory situation. 

It was pointed out that the introduction of electrical charge could lead to more 
interesting possibilities. Here one might hope to construct a classical model for the 
stable charged fermions that occur in nature, namely the proton and electron, and their 
antiparticles. However, a kink& an extended object, and it would seem suitable to 
introduce an electric charge of similar spatial nature. A way of doing this is provided 
by the geons of Wheeler's geometrodynamics (Misner and Wheeler 1957, Wheeler 1962). 
Some situations which can arise when a kink is combined with an Einstein-Rosen 
bridge have already been discussed by Finkelstein and Misner (1962). 
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Appendix. Christoffel symbols and Ricci tensor 

1 (P+'Q 
+ r ]  -+(P+Q)2A- r:, = a'(-PA- + Q A + ) + t  

P r;, = a'(PA+ -QA-)  + 5  

r;, = -rit = u ' [ - ( P + Q ) ~ ( A +  +A-)]+((-PA+)+?(QA-) 
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P Q 
( p + Q  P+Q 

r:, = a' ___ A- +-A+ -(P+Q)'(A+ + A - )  +5[QA+ -2(P+Q)1 

+ q ( - P A -  +2(P+Q)] 

TLe = r(P+Q)A+ e-" 

rg, = sin% rie 
r:, = cot e 
r;, = -s inecos8 

R,, = -({'+q')+ 

+ (a')' ( - 2(P + Q)'(A + + A -) 

1 
+(?I2 ( -~ ( p ~ Q ) 2 + ( p + Q ) 2 M - - 1 )  

- 1 )  

+ (01'5) [ - 4(P + Q )  + P A  - + 3QA + ]  + (a'q) [4(P + Q )  - 3 P A  - - Q A  + ]  

+ ( 5 ~ )  [ 1  - (P+ Q)'(A+ + A- 11 

Re, = ( 1 - S +  e - " ) + r e - "  

+-A+ + q  -l+--- + 4  1-- 
2 p  

A + ) ]  

2P P ) ( P+Q P+Q ( P + Q  P + Q  

R,, = sin'e Re, 

P Q + (a')' ( 2( P + Q)2( A + + A - ) - - P + Q A + - m A - )  

1 P 
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+(a’()[ - 4(P+ Q) + 3PA+ + QA-] + (a’q)[4(P + Q)- PA+ - 3QA-] 

R,, = R I ,  = a”+-a’ [-(P+Q)2(A+ +A-)] ( 3 
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